Публикации по тегу: метод следов
Категория:
Стереометрия (13(С2))Пошаговое построение сечения шестиугольной призмы
В этой статье приведено несколько примеров пошагового построения сечения правильной шестиугольной призмы методом следов. Иногда к методу следов был взят в помощь аксиоматический метод. Я старалась избегать пользоваться методом внутреннего проецирования намеренно, чтобы показать построение именно методом следов.
Задача 1.
Построить методом следов сечение шестиугольной...
Категория:
Стереометрия (13(С2))Пошаговое построение сечения четырехугольной пирамиды
Сегодня научимся строить сечения четырехугольной правильной пирамиды. Использовать для построения будем метод следов. Пользоваться этим методом неудобно и даже иногда невозможно, когда сечение имеет малый наклон или не имеет наклона к плоскости основания. Если такой случай вам попадется, лучше использовать метод внутреннего проецирования.
Категория:
Стереометрия (13(С2))Пошаговое построение сечения параллелепипеда
Построение сечения методом следов - это поэтапное отыскание точек, принадлежащих одной и той же плоскости грани и одновременно плоскости сечения, то есть прямым, проходящим через точки, принадлежащие сечению. Метод подходит для использования тогда, когда следы секущей плоскости и прямые граней многогранника пересекаются в области чертежа,...
Категория:
Стереометрия (13(С2))Построение сечения шестиугольной пирамиды
Здравствуйте, друзья! В этой статье предложено рассмотреть два случая построения сечения шестиугольной пирамиды. Пирамида всегда "рассекается" сложнее, чем призма, а чем больше у нее углов в основании, тем труднее. В первой задаче я постаралась пользоваться методом следов, а во второй - преимущественно использован метод внутреннего...
Категория:
Стереометрия (13(С2))Пошаговое построение сечения: треугольная пирамида.
В этой статье мы построим несколько сечений треугольной пирамиды, будем при этом использовать метод следов. Сначала мы рассмотрим самые простые случаи: когда точки, через которые должно пройти сечение, принадлежат ребрам пирамиды. Потом - случаи сложнее, когда одна или две из точек плоскости сечения принадлежат граням...