Рубрики

Определенный интеграл

Формула Ньютона-Лейбница. Площади фигур-2

Мы продолжаем использовать формулу  Ньютона-Лейбница, и научимся определять площади различных фигур, ограниченных теми или иными кривыми. Задачи в этой статье сложнее, чем в предыдущей.

Задача 1. Найти площадь фигуры, ограниченной заданными линиями: параболой Формула Ньютона-Лейбница. Площади фигур-2 и касательными к ней, проведенными из точки (0;1).

Так как касательная и...

18.06.2017 09:18:12 | Автор: Анна

|
|

Формула Ньютона-Лейбница. Площади фигур-1

В этой статье предлагаю вспомнить (или познакомиться) с геометрическим смыслом интеграла, формулой Ньютона-Лейбница, и научиться определять площади различных фигур, ограниченных теми или иными кривыми.

Дадим определение определенного интеграла: пусть функция Формула Ньютона-Лейбница. Площади фигур-1) определена и интегрируема на отрезке [a,b] и пусть Формула Ньютона-Лейбница. Площади фигур-1 – некоторая ее первообразная. Тогда число...

16.06.2017 09:17:42 | Автор: Анна

|
|

Профи.ру

Пароль для библиотеки – 777

Облако меток

Подписка

Введите Ваши данные:

Архивы