Просто об электротехнике, электронике, математике, физике
Просто об электротехнике, электронике, математике, физике
Категория: Теория чисел (19 (C7))

Задачи с целыми числами

Задачи эти предлагались репетиторам на сертификации по математике портала “Профи.ру”. Задачи не очень сложные, их уровень вполне соответствует 19 задаче ЕГЭ, но интересные.

Задача 1. Чему равно наименьшее восьмизначное число, дающее при делении на 297 остаток 289, при делении на 61 остаток 53, при делении на 21 остаток 13, при делении на 45 остаток 37, при делении на 826 остаток 818?

Решение: обозначим искомое число . Тогда

   

Глядя на это выражение, становится понятно, что решение затянется… Но можно заметить, что указанное выше выражение можно записать и так:

   

Тогда становится понятно, что нужно найти наименьшее общее кратное чисел 297, 61, 21, 45 и 826.

   

   

   

   

61 – простое число. Следовательно,

   

Ответ: .

Задача 2. Дату 9 октября 1963 года можно записать тремя числами: 9.10.63, которые оказались расположены в порядке неубывания. Во все дни, когда соответствующие три числа располагались в порядке неубывания, на металлообрабатывающем заводе проводились заседания. Чему равно количество дней, которые были посвящены заседаниям, если завод работал с 24 января 1957 года по 6 декабря 2004 года, а даты открытия и закрытия также учитываются?

Начинаем считать. В 57 году было проведено заседаний: 2 в феврале, 3 в марте, 4 в апреле и так далее, 12 в декабре. Итого (сумма прогрессии):

   

Итак, всего 77 заседаний – так как в январе завод еще не был открыт.

С 58 по 99 год, таким образом, проводилось по 78 заседаний – еще одно в январе.

В 2000 году заседаний не было. В 2001 – только 1, 1 января.

В 2002 – три, одно в январе и 2 в феврале.

В 2003 – 6 (в январе, феврале и марте), в 2004 – 10 (в январе, феврале, марте и апреле).

Осталось сложить:

   

Ответ: 3373.

Задача 3. Число 1447243 написали 45 раз подряд, при этом получилось 315-значное число. Из этого числа требуется вычеркнуть 3 цифры. Сколькими способами это можно сделать, если полученное 312-значное число должно делиться на 6?

Так как число 6 делится на два и на три, то полученное 312-значное число обязано быть четным. Поэтому последнюю тройку надо вычеркивать. Далее, так как число 1447243 написали 45 раз подряд, то даже без последней тройки оно делится на 3. Поэтому две вычеркнутые нами цифры в сумме обязаны делиться на три. Это 7 и 2  или 2 и 4, или 1 и 2 – никакие две другие в сумме не дадут кратную трем сумму. При этом последнюю в записи 312-значного числа 4 тоже можно вычеркнуть, но нельзя вычеркнуть сразу и 2 и 4, идущие последними. Имеем 135 четверок, 45 семерок, 45 единиц  и 45 двоек – двойку вычеркнуть обязательно. Поэтому у нас 45 способов это сделать. После этого у нас 45 способов вычеркнуть 7 – итого 2025 способов. Также 45 способов вычеркнуть 1 – это еще 2025 способов.Если вместе с двойкой вычеркиваем четверку –  то у нас 134 способа – последнюю нельзя. Итого 6030 способов. Всего 10080 способов.

Ответ: 10080.

Задача 4. Чему равно наибольшее количество цифр, стертых в 1740-значном числе , если сумма оставшихся цифр равна 1808?

Заметим, что часть 8633 составляет «период» данного числа. Эта часть состоит из 4 цифр, следовательно, в числе она повторяется раз. Сумма цифр этой части равна 20, следовательно, общая сумма всех цифр числа равна . Раз осталась сумма 1808 – следовательно, сумма вычеркнутых равна . Так как требуется вычеркнуть наибольшее количество цифр, то будем вычеркивать сначала все тройки. Сумма всех троек в числе равна . Теперь, если вычеркнуть все шестерки – это дает еще 2610. Остается вычеркнуть еще какое-то количество восьмерок. Определим, сколько:

   

   

Итого, мы вычеркнули 870 троек, 435 шестерок и 209 восьмерок – всего 1514 цифр.

 

Задача 5. Число 5081500199 написали 37 раз подряд, при этом получилось 370-значное число. Из этого 370-значного числа требуется вычеркнуть 5 цифр. Чему равно количество способов, которыми это можно сделать, если полученное после вычеркивания 365-значное число должно делиться на 30?

Так как 30 делится на 5, на 2  и на 3, то придется обязательно вычеркивать три последние цифры – 199. Остается вычеркнуть еще 2. Сумма цифр числа 5081500199 – 38 – не делится на три, число 37 – также. Поэтому надо вычеркивать такие цифры, чтобы добиться делимости на три.  После вычеркивания последних трех цифр (199) мы также не добились того, чтобы число делилось на три.

Сумма цифр числа после вычеркивания 199 составляет 1387.

Чтобы добиться делимости на три, нужно вычеркивать либо две пятерки (1377 делится на 3), либо 1 и 0 (1386), либо 8 и 5 (1374) – эти суммы «заберут» лишнюю  единицу, и число будет делиться на три. При вычеркивании ноля может быть вычеркнут и последний – это не изменит четности и делимости на 5. Итак, считаем. У нас 74 пятерки, то есть первую можно вычеркнуть 74 способами. Вторую – уже 73. Следовательно, способов вычеркнуть две пятерки – . Вторая пара: единицу можем выбрать 73 способами (одна зачеркнута в самом начале), 0 – 111 способами. Следовательно, вторую пару можно выбрать способами.

Способов выбрать восьмерку – 37, пятерку – 74. Поэтому эта пара даст способов. Итого способа.

Ответ: 16243 способа.

 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *