Просто об электротехнике, электронике, математике, физике
Просто об электротехнике, электронике, математике, физике
Категория: ЕГЭ по математике, Математика, ОГЭ (ГИА) по математике

Масштаб


Всем здравствуйте! Решила рассмотреть несколько задачек на масштаб – оказалось, есть такая нужда у моих учеников. Может, и вам пригодится!

Всем нам знакомы карты местности – так или иначе, но каждый встречался с ними, в школе или по жизни. Понятно, что карта – лишь только изображение, и по сравнению с расстоянием на местности объекты на карте должны быть меньше (иначе зачем она нужна?). Масштаб – это как раз отношение, которое показывает, во сколько раз карта меньше, чем реальная местность, то есть во сколько раз расстояние на карте меньше, чем на местности.

Но масштаб призван также и увеличивать что-то маленькое так, чтобы можно было сделать подробный чертеж или внимательно рассмотреть что-то мелкое.

Первый, “уменьшающий”, масштаб, может быть записан, например, так: 1:5. Тогда  расстояние на карте (или чертеже) в пять раз меньше, чем в реальности. Масштаб, записанный  так: 1: 100 000  означает, что изображение меньше в сто тысяч раз.

“Увеличивающий” масштаб записывается: 100:1, или 1000:1. Это значит, что расстояние увеличили в сто или тысячу раз, чтобы его можно было изобразить.

В зависимости от конкретной задачи выбирают и масштаб: карта не должна быть слишком уж мелкой, а понятной и подробной, но в то же время не должна быть гигантской,  а простую, но небольшую деталь вовсе необязательно увеличивать в десятки раз, когда может быть достаточно и пяти.

Когда работаешь с масштабом, очень важно уметь составлять отношения (пропорции). Давайте потренируемся в этом!

1. Расстояние на местности в 20 м изображено на плане отрезком 1 см. Определите масштаб плана.

Чтобы определить масштаб, нужно узнать, во сколько раз расстояние на карте меньше, чем на местности. Для этого нужно расстояние на местности привести к тем же единицам, что и на плане:

20 м = 20*100 см=2000 см.

Тогда, если одному см на карте соответствуют 2000 см на местности, то и  масштаб 1:2000, то есть на карте длина отрезка меньше в 2000 раз.

2. Длина дома на плане 25 см. Чему равна длина дома на местности, если план сделан в масштабе 1:300?

Так как масштаб показывает, во сколько раз карта или план меньше действительного расстояния, или, иначе говоря, во сколько дом больше своего изображения, то:

L=25*300=7500 см, или 75 м.

3. Длина железнодорожной магистрали 3140 км. Какой длины получится линия, изображающая эту магистраль на карте, сделанной в масштабе: а) 1:10 000 000; б) 1:2 000 000?

Обозначим за x расстояние на карте. Переведем длину магистрали в сантиметры:

3140 км = 3 140 000 м = 314 000 000 см.

Тогда x/314000000=1/10000000

x/314=1/10

По правилу пропорции x=31,4 см.

Изображение карты во втором масштабе – крупнее (2 миллиона меньше, чем 10). Так как отношение масштабов – 1:5, то и изображение будет крупнее в пять раз: 157 см. В этом можно убедиться, решив задачу “стандартным” способом.

4. Расстояние от Бреста до Владивостока более 10 000 км. Уместится ли на одной странице тетради это расстояние в масштабе одна десятимиллионная?

Снова за x обозначим расстояние на карте. Тогда

x/{1 000 000 000}=1/{10 000 000}

x/100 = 1/1, или x=100 см.

5. Длина железной дороги Москва – Петербург приближенно равна 650 км. Изобразите отрезком эту дорогу, применив масштаб 1:10 000 000.

Переведем километры в сантиметры:

650 км = 650 000 м = 65 000 000  см.

Обозначаем расстояние на карте неизвестной и составляем пропорцию:

x/{65 000 000}=1/{10 000 000}

x/65 = 1/10, или x=6,5 см.

6. Отрезку на карте, длина которого 3,6 см, соответствует расстояние на местности в 72 км. Каково расстояние между городами, если на этой карте расстояние между ними 12,6 см?

Такую задачу можно решать длинным путем: определить масштаб карты и затем найти расстояние между городами, зная масштаб.

Тогда масштаб будет таким:

{3,6}/{720 000}=1/y

А второе расстояние найдем так:

{12,6}/x=1/y.

Почему бы тогда не упростить себе задачу, не определяя масштаб, а составить пропорцию сразу:

{3,6}/{720 000}={12,6}/x

Отсюда x={12,6*720 000}/{3,6}=12,6*200 000=2 520 000 см, или 25,2 км

7. Длина детали на чертеже, сделанном в масштабе 1:3, равна 2,4 см. Чему будет равна длина этой детали на другом чертеже, сделанном в масштабе 2:1?

Нам не нужно знать, каковы реальные размеры детали – нас об этом не спрашивают. Поэтому мы и не будем их искать, а найдем новый размер чертежа через отношение масштабов:

{2,4}/x={1/3}/{2/1}=1/6

x=6*2,4=14,4 см

8. Площадь земельного участка изображается на плане, масштаб которого 1:250, в виде прямоугольника площадью 128 кв. см. Найдите действительную площадь этого земельного участка.

Хорошая задача. Не пугайтесь, что длина и ширина участка неизвестны – нам и не надо знать их. Однако для лучшего понимания все же обозначим их, например, a и b. Тогда на карте расстояние  a изображается отрезком  a/250, а расстояние  b – отрезком  b/250. Если перемножить длину и ширину изображения участка, то получим как раз 128 кв. см. Но тогда получается, что  {a/250}*{b/250}=128, или {a*b}=128*{250^2}, то есть реальная площадь участка получится, если площадь изображения умножить на квадрат масштаба: {a*b}=128*{250^2}=8 000 000 кв. см. Переведем это в кв. метры, для этого нужно разделить не на 100, а на 100^2: 800 кв. м, а если нужны квадратные километры, тогда еще на 1000^2: 0,0008 кв. км.

9. Площадь земельного участка прямоугольной формы 6 га. Найдите площадь прямоугольника, изображающего этот участок на плане, масштаб которого 1:5000.

Аналогичная задача. Вспомним, что такое га: это квадрат со стороной 100 м, то есть это 10 000 кв. м. Тогда в сантиметрах это (умножаем на  100^2) 100 000 000 кв. см. Поделим на масштаб в квадрате, чтобы определить площадь этого прямоугольника на карте: {100 000 000}/{5000^2}=4 кв.см.

Нетрудно догадаться, что, если бы речь шла об объеме, то масштаб пришлось бы возводить в куб: в данном случае масштаб – это коэффициент подобия. Площади относятся как квадрат коэффициента подобия, а объемы – как куб коэффициента подобия.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *