Задача 1. За промежуток времени с тело прошло половину окружности радиусом 100 см. Найти среднюю путевую скорость
и модуль средней скорости
.
Решение: средней путевой скоростью называется средняя скорость прохождения пути, которую мы с вами вычисляем, деля весь путь (длину траектории) на все время. Модуль средней скорости еще называют средней скоростью по перемещению. Ее можно определить, разделив перемещение на время. Тогда длина пути – это длина половины окружности, а перемещение – длина диаметра.
Ответ: средняя путевая скорость – 0,314 м/с, средняя скорость по перемещению – 0,2 м/с
Задача 2. Однородный диск радиусом 0,5 м катится без проскальзывания со скоростью 2 м/с. Найти скорость точек диска . Найти геометрическое место всех точек диска, скорость которых 2 м/с. Угол
.

Скорость точек окружности
Решение:
Точка A – центр вращения. Поэтому ее скорость относительно поверхности, по которой катится диск, равна 0. Поскольку в условии сказано, что диск катится со скоростью 2 м/с, то это означает, что с такой скоростью относительно поверхности будет передвигаться его центр: м/с. Поэтому точка А относительно центра будет передвигаться с точно такой же скоростью – со скоростью 2 м/с, и это и будет линейная скорость вращения диска, то есть скорость всех точек, лежащих на его краю, относительно центра
м/с. Линейные скорости показаны для точек
оранжевыми стрелками. Эти стрелки показывают, какой была бы скорость данной точки, если бы диск не катился, а вращался бы, например, на оси, проходящей через его центр. Но наш диск катится. Поэтому к линейной скорости вращения каждой точки необходимо еще прибавить скорость движения диска относительно опоры. То есть к каждой рыжей стрелке прибавим (векторно) скорость точки О – центра диска – черную стрелку. Тогда-то и становится понятным, почему у точки
скорость равна 0 – линейная скорость вращения направлена влево, а скорость качения – вправо, и поскольку они равны, то гасят друг друга:
. В точке C скорости, напротив, сложатся, поскольку они сонаправлены:
м/с.
Определим теперь скорости точек и
. Понятно, что они будут равны численно, но направлены в разные стороны.
Осталось разобраться с точкой . Сделаем еще один рисунок. Линейная скорость вращения всегда направлена по касательной, то есть перпендикулярно радиусу
. Углы, которые образуются между векторами, показаны на рисунке, в том числе угол
. Тогда в параллелограмме
угол
, а так как
, то все углы в треугольнике равны
и он равносторонний, то есть
м/с. Также можно было найти длину этого вектора скорости по теореме косинусов или складывая проекции векторов. Можно догадаться, что точка, симметричная точке E относительно A также имеет скорость, равную 2 м/с. Вообще точки, лежащие на одном и том же расстоянии от центра вращения A будут иметь равные скорости, линии равных скоростей (геометрические места точек с равными скоростями) показаны на рисунке различного цвета дугами: единственная точка (точка C) будет иметь скорость 4 м/с, точки, лежащие на рыжей дуне, будут иметь скорости, равные
, точки, лежащие на синей дуге, будут иметь скорости, равные 2 м/с, как у точки E.

Пробуксовывание
Задача 3. Колесо, пробуксовывая, катится по ровной, горизонтальной дороге. Найти скорость центра колеса , если известно, что скорость нижней точки
м/c, а верхней –
м/c.
Решение:
Если колесо пробуксовывает, то это означает, что скорость его нижней точки не равна нулю, то есть его центр вращения – не точка касания поверхности, центр вращения будет расположен выше. Но центр вращения находится и не в центре колеса. Найти его можно, если провести вертикальный диаметр, построить вектора скоростей в масштабе, а затем, соединив концы векторов скоростей прямой линией, отметить точку пересечения этой линии с диаметром. У нас на рисунке это точка О. Точка К – центр колеса, его скорость нам и нужно найти. Из подобия треугольников и
запишем отношения сходственных сторон:
Тогда
Тогда
Теперь обратимся к подобным треугольникам и
. Для них отношение сходственных сторон равно:
Откуда м/с.
Ну а более простым решение было бы, если бы мы просто нашли среднее арифметическое скоростей, ведь точка, про которую нас спрашивают, лежит по центру между точками приложения векторов скоростей и
, при этом не забываем о векторном сложении скоростей, берем скорость
со знаком «минус»:
м/с.
Ответ: 4 м/с.

Проскальзывание
Задача 4. Обруч, проскальзывая, катится по горизонтальной ровной поверхности. В некоторый момент скорость верхней точки А м/с, а нижней точки B
м/с. Определить скорость концов диаметра
, перпендикулярного к
, для того же момента времени. Под какими углами они направлены к горизонту?
Решение:
Проскальзывание – это ситуация, когда скорость нижней точки (точки касания обручем земли) не нулевая, но направлена она в сторону качения. В этом случае центр вращения, так же, как и в случае пробуксовки, не совпадает с центром колеса. Более того, центр вращения даже не внутри колеса – он снаружи (точка О). Как и в предыдущей задаче, можно найти его таким же способом – проведя линию через концы скоростей и найдя ее пересечение с продолжением вертикального диаметра. И, точно так же, как в предыдущей задаче, можно определить скорость центра колеса как среднее арифметическое, только обе скорости направлены у нас теперь в одну сторону, поэтому ставим знак «плюс» перед обеими:
м/с.
Так как скорость точки есть результат векторного сложения линейной скорости вращения колеса
и скорости поступательного движения центра колеса
, то можем из этого сделать вывод, что линейная скорость вращения равна 2 м/с – ровно на столько скорость центра колеса, найденная нами, отличается от скорости точки
, данной в условии задачи. Линейную скорость на рисунке не показывала, или показывала не везде. Скорости точек
и
равны численно, но направлены по-разному. Их скорости – также результат векторного сложения линейной скорости вращения колеса и скорости поступательного движения центра, а, так как эти две скорости перпендикулярны друг другу, то результат их сложения может быть найден по Пифагору:
Понятно, что раз скорости перпендикулярны друг другу, то являются катетами некоторого прямоугольного треугольника, и связывает их между собой функция тангенса, поэтому угол наклона к горизонту скорости точки можно найти как
Ответ: ,

Шарик катится по двум линейкам
Задача 5. Шарик радиусом см катится равномерно и без проскальзывания по двум параллельным линейкам, расстояние между которыми равно
см, и за время
с проходит
см. С какими скоростями движутся верхняя и нижняя точки шарика?
На рисунке изображено, как двигается шарик, при этом для удобства показан как вид спереди, так и вид сбоку. Поскольку скорость шарика равна м/с, то эта скорость – скорость поступательного движения его центра масс – точки А. Центр вращения шарика находится в точке О – на уровне края линеек. Определим положение точки О – определим длину отрезка
. Это легко сделать, зная радиус шарика и рассмотрев рисунок, из треугольника
. Центр вращения в данный момент неподвижен, а точка А двигается относительно него со скоростью 0,6 м/с. Поэтому скорость нижней точки
будет
Таким же способом определяем скорость верхней точки :
Ответ: скорость нижней точки 0,15 м/c, скорость верхней 1,35 м/c.
Задача 6. Автомобиль движется по закругленному шоссе, имеющему радиус кривизны м. Закон движения автомобиля имеет вид:
, где
м,
м/с,
м/с
. Найти скорость автомобиля
, его тангенциальное
, нормальное
и полное
ускорения в момент времени
с.
Решение.
Путь:
Производная пути – линейная скорость:
Вторая производная – тангенциальное ускорение:
Нормальное ускорение:
Полное ускорение:
Задача7. Угол поворота диска радиусом см изменяется со временем по закону
. Определить зависимости от времени угловой скорости, углового ускорения и линейной скорости точек диска.
Решение: угловая скорость – производная угла:
Угловое ускорение – производная угловой скорости:
Линейная скорость:
Задача 8. Точка движется по окружности с постоянным угловым ускорением рад/
. Найти угол между скоростью и ускорением через 1 с после начала движения. Начальная скорость точки равна 0.
Решение: так как тангенциальное ускорение и линейная скорость совпадают по направлению, то определим обе составляющие ускорения: как нормальную, так и тангенциальную. Угол между полным ускорением и его тангенциальной составляющей можно тогда будет найти через функцию тангенса.
Известно, что нормальное ускорение , тангенциальное ускорение
. При этом
, или
. Тогда
Искомый угол:
Ответ:

Два концентрических колеса
Задача 9. Два концентрических колеса радиусами см и
см вращаются с угловыми скоростями
рад/c и
рад/с соответственно. Между ними зажато третье колесо так, как показано на рисунке. Какова угловая скорость этого колеса вокруг собственной оси? Проскальзывания нет.
Решение: определим радиус маленького (третьего) колеса, м:
Определим линейную скорость точек первого колеса:
Определим линейную скорость точек второго колеса:
Найдем угловую скорость маленького колеса, зная, что линейная скорость его точек равна линейной скорости больших колес, так как проскальзывания нет:
Ответ: 20 рад/с
Задача 10. Гайку закручивают на болт за время . Длина болта
, резьба составляет угол
с плоскостью гайки. Найдите угловую скорость гайки, если радиус болта равен
.

Скорость вращения гайки по ходу завинчивания на болт
Решение: при закручивании гайка не только вращается, но и движется вдоль болта поступательно, например, спускается вниз. Поэтому точка, взятая на ребре гайки, будет обладать двумя составляющими скорости: скорость, с которой она будет двигаться вниз вдоль болта (назовем ее ) и скорость, с которой эта точка вращается – это уже знакомая нам линейная скорость (
). Тогда
.
Из рисунка видно, что
С другой стороны, так как длина болта , а гайка спускается по нему за время
, то
Тогда
И можно определить :
Тогда
Ответ:
Комментариев - 3
А как бы двигалось зажатое колесо в задаче 9, если бы, предположим, скорость вторая была больше? И как тогда бы определялась угловая скорость этого колеса?
Это невозможно. Если зажатое колесо сохраняет целостность, то все его точки (края колеса) должны иметь одну и ту же скорость.
Действительно, не догадался сразу. Ведь если бы это условие выполнялось, то одна часть окружности должна была догнать другую, но тогда окружность разорвётся.
Спасибо за ответ!